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This paper presents a novel scheme to efficiently evaluate transient linear wave
fields that are generated by two-dimensional (2D) source configurations. The scheme,
termed the plane wave time domain algorithm (PWTD), realizes a diagonal trans-
lation operator for 2D transient wave fields through their representation in terms of
Hilbert transformed plane wave expansions. Numerical results are presented that val-
idate the algorithm and demonstrate its convergence properties. The proposed PWTD
algorithm can be coupled to classical 2D time domain integral equation solvers in a
two-level and multilevel setting. It is shown that analysis of a 2D surface scattering
phenomenon, in which sources are represented in termhg spatial andN, tem-
poral samples, based on two-level and multilevel PWTD augmented integral equa-
tion solvers, require© (NN, log N;) and O(NsN; log Nslog N;) computational
resources, respectively (as oppose®tiN2N?) for a classical solver). Therefore,
these PWTD schemes render feasible the rapid integral equation based analysis of
2D transient scattering phenomena involving large surfaces2000 Academic Press
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1. INTRODUCTION

Accurate and efficient techniques for analyzing transient linear wave phenomena a
interest to disciplines ranging from acoustics to electromagnetics to geophysics [1, 2].
past, significant efforts have been expended on the development of integral equation |
methods for analyzing transient two-dimensional (2D) surface scattering phenomene
vast majority of which can be classified as marching on in time (MOT) schemes [3-6].
fortunately, all these methods suffer from a high computational complexity, which seve
limits their application to practical, real-world problems.
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To accelerate the integral equation based analysis of three-dimensional (3D) tran
scattering phenomena, our group recently developed the 3D plane wave time do
(PWTD) algorithm [7, 8], which can be considered the extension of the 3D frequel
domain fast multipole method [9, 10] to the time domain. The 3D PWTD algorithm pern
the fast evaluatiorof transient linear wave fields that are generatedkibgwn3D source
configurations. In addition, when coupled to 3D MOT solvers, the 3D PWTD algoritt
permits thdast reconstruction of unknowaD source configurations that generate the fielc
scattered from an object. In other words, 3D PWTD enhanced MOT solvers permitther
solution of transient 3D surface scattering problems.

In this paper, we propose a 2D PWTD algorithm, i.e., an extension of our previous w
from 3D to 2D. The 2D time domain Green’s function for the wave equation, in contr
to its 3D cousin, is not localized in time and has an infinitely long temporal tail, whi
complicates the construction of the 2D PWTD scheme. When used in conjunction witl
MOT solver [3-5], the 2D PWTD method drastically accelerates the solution of transi
2D scattering problems.

Consider an impenetrable or penetrable but homogenous object of invariant cross
tion, extending along the-axis, and residing in a homogeneous medium with wave spee
(Fig. 1). Assume that the maximum transverse linear dimension of this objectligt the
object is excited by a-invariant transient incident field with temporal bandwidth.,, and
that the surface sources induced by the incident field are representedNysQ wmax/C
and N; o« Twmax Spatial and temporal samples, whérds the total temporal duration of
the analysis. The computational cost associated with the integral equation based &
sis of this scattering problem using classical MOT methods scal€x BgN?). The 2D
PWTD algorithm developed in this paper adopts a plane wave expansion to arrive
diagonal translation operator for transient 2D wave fields that permits the rapid evalue
of fields due to surface bound source densities. It will be shown that two-level and mi
level PWTD enhanced MOT algorithms permit the analysis of 2D scattering phenomer
O(Nsl-5 N log N;) andO(NsN; log Ng log N;) operations. Itis anticipated that these PWTL
enhanced MOT schemes will render feasible the fast analysis of 2D transient scatts
phenomena involving large and complex surfaces.

incident pulse

FIG. 1. Sketch map of two-dimensional scattering.
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We wish to note that the proposed scheme is not the first attempt at constructing &
method for evaluating 2D wave fields due to known sources. First, Crutchfield propc
a scheme that, in spirit, is similar to the one outlined in this paper [11]. In contrast to
scheme, however, Crutchfield’s does not allow for a systematic elimination of ghost
nals associated with time domain plane wave expansions. Second, élpéproposed a
technique for rapidly evaluating nonreflecting boundary kernels for time domain wave p
agation [12]. However, their scheme applies only to circular source distributions, whe
ours applies to arbitrarily shaped configurations.

This paper is organized as follows. The proposed PWTD scheme for reconstructin
wave fields due to known sources is presented in Section 2. This section also discuss
accuracy and convergence properties of this algorithm. The computational complexi
two-level and multilevel PWTD enhanced MOT solvers is analyzed in Section 3. Fine
Section 4 summarizes the conclusions of this study. A variety of definitions, includ
those for the Fourier and Hilbert transforms and a local interpolation function that is u
extensively in this study, is provided in Appendix.

2. THE TWO-DIMENSIONAL PLANE WAVE TIME DOMAIN ALGORITHM

This section describes the 2D PWTD algorithm for evaluating transient fields due
two-dimensional source distributions. Subsection 2.1 introduces notation and analyze
computational complexity of a traditional 2D MOT scheme. Subsection 2.2 describ
representation of the transient field produced by a two-dimensional source configur:
in terms of a Hilbert transformed plane wave expansion and a condition that perm
ghost free recovery of the field from this expansion. The 2D PWTD algorithm, includin
temporal sampling scheme for sources and fields, a closed form expression for a dia
translation operator for 2D wave fields, and a method for efficiently evaluating the Hilk
transform within the context of the PWTD scheme, are discussed in Subsection 2.3. Fir
Subsection 2.4 describes a variety of numerical experiments that validate the algorith

2.1. Preliminaries
Consider a fieldA(p, t) that satisfies the 2D wave equation,
» 192
VA, 1) — poTe Alp. 1) = —J(p, 1), 1)

whereJ(p, t) is the source distribution and the operafr= (32/3x> + 32/9y?).
The field at an observey, can be expressed as

Alpo. t) = /Cdp/up/,t) +g(lpo — p'1. 1), %)

whereC is the contour of the scatterer’s cross section on which the sources red@®tes
temporal convolutiong(, ) is the 2D Green'’s function

1 t—

21\ /12— (p/c)?’

andu(-) is the Heaviside step function (Appendix).

®3)
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Assume for the moment thal(p, t) consists of a single line source locatechawvith
temporal signaturd (t) of approximate duratioft and bandwidthomay, i.€.,

wheref (t) =0 outside the interval &t < T. From Eq. (2), the field gt, due to this source
can be expressed as

A(po’ t) = f(t) * g(pSO5 t)v (5)

wherepso= |psol aNdpso= py — Ps-

To study the computational cost associated with the evaluation of Eq. (5), assume
the band-limited source signaturfat) is represented in terms & o« T wmax temporal
samples. Itis easily verified that, for arbitrgryandp,, the cost of directly evaluating the
right hand side of Eq. (5) for a total numberdf temporal samples scales@gN?). Next,
consider the 2D transient scattering problem described in the Introduction to this pe
The computational cost associated with the integral equation based analysis of this prc
scales as’)(Nt2 NSZ). This complexity estimate is arrived at as follows. MOT-based integt
equation solvers construct consecutive temporal snapshots of the source distribution
generate the fields scattered by an object by requiring that the sum of the incident
scattered fields satisfies a given instantaneous boundary condition on the scatterer st
By virtue of Eq. (5), the scattered fields depend on the past values of the surface sot
The evaluation of the instantaneous scattered field observed at a single location o
surface calls for the evaluation of the convolution in Eq. (5) for all Bhesources and
can be accomplished i@ (NsN;) operations. Therefore the cost of calculating the scatter
fields over the scatterer’s surface scale®&hl; N2). Once these fields have been evaluate
instantaneous source distributions can be computed, which in turn permits the MOT st
to consider the next time step. The MOT scheme incurs the above cost for eachNyf th
time steps, hence tf@(N2N2) complexity estimate. This computational cost prohibits th
analysis of large-scale scattering problems.

2.2. The 2D Plane Wave Expansion

To reduce the computational cost associated with the evaluation of the convolutio
Eq. (5) for all source-observer pairs in a classical MOT algorithm, a plane wave expan
of the source field, similar to that introduced in [7, 8], is considered next.

To represent the source field in terms of a plane wave basis, the source &igne

broken up intoN, consecutive subsignafs(t), v=0,1,..., N, —1, as
N,—1
fty=">" f,. (6)
v=0

As depicted in Fig. 2, itis assumed thig(t) =0 fort < t,; andt > t,,, i.e., thatf,(t) starts
att,1 and ends dt,,, and that all subsignalf;, (t) are of equal duratiofis =t,, — t,;. Acom-
putational scheme for achieving decomposition (6) will be described in Subsection 2.
Let A, (p,, t) denote the field g, due to the line source gt with temporal signaturé, (t),
then

Av(pov t) = fv(t) * g(pSO’ t)9 (7)
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FIG. 2. The original signal and subsignals.
and therefore
N,—1
Apo 1) = Y Ay(po. 1), ®)

v=0

To construct a plane wave representation of the source field, consider thelsjgnal t)
defined as

1 2n "
a0 = 4 /0 f,(t — peo- k(@)/0) dg. ©)

wherek (¢) = % cos¢ + ¥ sing. It is easily shown that

I f,/(psw t) = fv(t) * |8(pso7 t), (10)

wherel;s(pge, t) is

1 (& N
os0 ) = - /O 5(t — peo - k()/0) d

1 P(t, pso/C)

" 20 \f(psofO? — 12

Here,P(,) is a unit pulse function (Appendix).
Now, let A, (p,, t) denote the Hilbert transform (Appendix) bf (pg,, 1),

(11)

Av(por ) = H{l1,(pso )} = Fu (1) % Glpsor 1) 12)
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In the above equatiori(pso, t) denotes the Hilbert transform of (pg, t) [2],

U(t — pso/C) — U(—t — pso/C)

21/ t2 — (pso/C)?

Comparison of Egs. (3) and (13) establishes the following relationship betw(@es t)
andg(pso, t),

g(IOSOV t) = H{la(pso’ O} = (13)

g(pso’ t)v t 2 0

14
0, t <O. (14)

9(pso, 1) = {

From Egs. (7), (12), and (13), it is seen tti@t(po, t) is closely related to the actual field
A, (po, ). Specifically, it follows from Eq. (13) thafi(pse, t) is composed of two parts:
d(pso, t) and animagewith respect to the temporal origin. Therefon&,(po, t) is also
composed of two parts: the actual sigiakp,, t) and an image, which will be referred to
as theghost signal This observation closely follows that in [2].

To exploit Eg. (12) in the construction of a fast scheme for evaluating,, t), assume
that ps resides within a source circle centered aroppdand thatp, resides within an
observation circle centered aroupg (Fig. 3). Assume that these two circles have th
same radiudis. Next, a scheme is described for representing the observer field in te
of Hilbert transformed plane wave expansions througragonaltranslation operator. The
scheme is designed to facilitate its incorporation into MOT based integral equation sols
which, as will be demonstrated below, guarantees that the above described ghost sig
automatically eliminated by time-gating.

If the vector connecting the source and the observation points is expressed as

Pso = (Po — P2) + (p2 — p1) + (p1 — ps)
= P20 + P12 + Psts (15)

observation
circle

source
circle

FIG. 3. Geometry under study.
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then Eq. (9) can be cast in the form

. - - .
I, (Psor ) = 42/0 8 [t— Poo 220 'Ck(¢)] %8 {t _ P12 B9 'Ck(‘b)} %8 {t— Por 200 'Ck(d’)} 5 f,(t) dop.

(16)

Using Eq. (12), and the fact that the Hilbert transform commutes with the temporal cor
lutions, the following expression fok (p,, t) results:

21 1 A
Av(po t) = %/ S{t—L:(@}*H{B{t_L;((@}
0
*3 [t - L:(ﬂ * fv(t>} dg. a7

This equation suggests the following four-stage scheme for evalué;;i@g, t):

(i) Construction of outgoing rays-or every directiork(¢), evaluate the rightmost
convolution appearing in Eq. (17) betweépnt) ands[t — pg; -T((q&n)/c]. This operation
imposes a direction dependent temporal shiftfp¢t). The resulting signals are termed
outgoing rays, and each ray describes a plane wave emanating from the source circle
T<(¢) direction.

(ii) Construction of incoming ray&or every directiork (¢), carry out the center con-
volution appearing in Eq. (17) between the outgoing rays #bé-p,, - T<(¢)/c]. This
operation translates outgoing rays between the centers of the source and observatic
cles. The resulting signals are termed incoming rays, and each ray describes a plane
impinging on the observer circle from directiork (¢).

(iif) Construction of Hilbert transformed incoming raysor every directiork (¢),
evaluate the Hilbert transform of the incoming ray.

(iv) Construction of the observer fielHor every directiork(¢), evaluate the leftmost
convolution appearing in Eq. (17), i.e., convolve the Hilbert transform of the incoming r:
with 5[t — p,, - k(¢)/c] and add up the resulting signals for &li¢), i.e., carry out the
integration in Eq. (17). This operation projects the Hilbert transform of the incoming r:
onto the observers by imposing appropriate temporal shifts.

As mentioned previously, the observer sigﬁatpo, t) constructed through the above se
qguence of operations will be corrupted by a ghost signal. To render the above scheme (
within an MOT based integral equation solver, assume that steps (ii) and (iii) are effe
only att =t,,. In other words, assume that the signél;{po, t) are explicitly time gated
out fort < t,,. Note that, fott > t,,, the outgoing rays are completely formed and move o
from the center of the source circle with speedience, the above assumption simplifie
the execution of steps (ii)—(iii). Next, note that the earliest time of arrival of the actual sig
in the observer circle associated with a source with temporal signét@neresiding in the
source circle is

=< + 1t — Ts. (18)
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Since,&v(po, t) will only be observed in the observer circle for t,,, it is required that
ta > t,2, @s otherwise part of the true signal would be discarded, which would be an unde:
byproduct of the above suggested scheme. Therefore, it follows from Eq. (18) that

T, 2R (19)
c

Equation (19) guarantees that none of the actual signal is dismissed due to time gz
However, what about the ghost signal? Will it be observed? From Fig. 4, which dep
I+, (pso ) and Au(po, t), it is seen that the ghost signal vanishes affer pso/C < t,2.
Hence, if translations only take place aftett,,, then condition (19) also guarantees thg
only actual fieldsA, (p,, t) are observed, i.eA,(p,, t) = Au(po, t) for t > t,». Therefore,
the above described sequence of operations guarantees a ghost free recovery of th
due to an arbitrary configuration of sources distributed over the source circle throug!

the observer circle.

)\ 'g(va’t)
A S (@)
~Psolc !
Psolc
L
tvl tv2 g
(a) (b)
A4, (p,.t)
‘\ [fv (p.\'o’t)
tVZ - p.\'a/c
!
A Ll
N |
tvl + p.\‘o/c
£
tvl —p.\v/c tv2 +pm/c

(c) d

FIG. 4. lllustration for PWTD algorithm. (a) The source subsigrialt); (b) 8(pso, t); (C) the plane wave
expansion off, (t); (d) result of the convolution betweei) (t) and§(oso, t).
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2.3. Computational Aspects

To efficiently evaluateA, (p,, t) using the above described algorithm, computation
schemes are needed to decompose the source signal into subsignals as described by
to carry out the convolutions and the angular integration appearing in Eq. (17), an
evaluate the Hilbert transform. Subsections 2.3.1, 2.3.2, and 2.3.3 address these iss
turn. The computational complexity of this scheme within an MOT solver is analyzec
Subsection 2.3.4.

2.3.1. Temporal sampling and representatioithis section describes a technique fo
breaking up the source signal into a set of subsignals. This decomposition is calle
because Eg. (19) imposes a maximum duration on the signal that can be translated
free from the source to the observer circle. Becatige is band-limited, each subsignal
f,(t) can be described byl; samples off (t), as

W+ M—1

fy= > fkAhy(®), (20)

k=vM;

wherey(t) is a time shifted local interpolant, and the choicévafwill be discussed later.
Many good choices of (t) exist; however, in this study, we choose

Yi(t) = P(t — KAt, wmax x1, Pt), (21)

whereP(t, wmax X1, Pt) IS an approximate prolate spheroidal interpolant (Appendix). Tl
interpolantP (t, wmax X1, Pt) IS band-limited tavt = x1wmax The temporal oversampling
ratio x; > 1 is related to the sampling rate A$ = 7/ (x1wmax - AS stated in the Appendix,
P(t, wmax X1, Pt) is virtually time-limied and, for all practical purposes, onlg; 2+ 1 sam-
ples ofy(t) are required in the interpolation described by Eq. (20). The error of this lo
interpolation can be controlled and made arbitrarily small by increaging p;. As a result,
the above construction indeed guarantees tha) = 0 whent < t,; andt > t,,, where

{tul = (vM; — p At . 22)

tie=[(v+ DM — 1+ p] At.

As each subsignaf,(t) is essentially time-limited with duratiofs, Egs. (19) and (22)
imply that M; should satisfy

Ts
M S 2 1 2
tsht pHrJ, (23)

where thel- | denotes the nearest smaller interger.

The above scheme not only accomplishes the decomposition (6) (because of the
nature of the interpolanig(t)), but also permits the efficient evaluation of the convolutior
and angular integrations appearing in Eq. (17) becausgyti¢ has a finite bandwidth, as
discussed next.

2.3.2. Diagonal translation operators.To efficiently evaluate the angular integral ir
Eqg. (17), i.e., to replace the angular integration in Eq. (17) by a finite sum, consider
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signal p(t, ¢) defined as

p(t, ¢) =8 [t - pz"fk(@} *8['[ - L:(‘b)} « f,00). (24)

This signal can be interpreted as the transient far-field radiation pattern of a source loc
atpg; + pao, Which is always less thar in magnitude. Since the angular variation in the
radiation pattern of such a source distribution is quasi band-limited [13pi#]$) can be
represented in terms of\g, + 1 samples as [13]

Ny

Pt ¢)= > Pt ¢)D(@ — ¢n), (25)

n=—Ny

whereD (¢) represents the Dirichlet kernel

N,
Sin[(2Ny + 1)¢/2] 1 A
D(¢) = , = elm?, 26
@) 2Ny + D sin(¢p/2) 2Ny +1 mZZ_N(ﬁ (26)
and¢, =n2r/(2N, + 1).
In the above, the paramethl, can be chosen as
,
Ny = "Xz?f(ZRs)-‘ ) (27)

where[-] denotes the nearestlarger integer, ghid termed thangular oversampling ratio

The expansion in Eq. (25) converges very fast with increagindNote thatN, is closely

related taw s = x1wmax the bandwidth of the subsignél(t), as well as;. Henceforth, the

parametery, = x1 x5 Will be used as the combined oversampling ratio in dealing With
Combining Egs. (16), (24), and (25) yields

1 [ -k No
|fv<pso,t>=E/O a[t—p“—c(d’)] *[ 3 p(t,¢>n>D<¢—¢n>]d¢

n=—Ny
Ny
= Y plt.¢n) * Tn(prz: 1)
n=—Ny
Ny - -
-3 S[t _ P2 ':(%)]  To(pip 1) *a[t B Psl':(fﬁn)] < £, (28)
n=—N,

where

1 2 T(
Ti(pp t) = E/o «s[t - "12—(‘”} D(¢ — ¢n) d

RCCOS¢ eIM@—gn-+12)
47'[(2N¢+l) Z / [ ] dé

1

d)
-+t ¢ Z £m COSM(—¢n + ¢12)]

22Ny + 1) Re &= c

Tm(Ct/Re) P<t 5)
V1-(ct/R)z \’

(29)
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The7,(p1,, t) appearing in the above equation is termed the plane wave translation func
between the centers of the source and the observation cifiGi€s, is the Chebyshev
polynomial of degreen, R. = |p15|, ¢12 IS the angle betwegp,, andX (Fig. 3), andey, = 1
for m=0; ey, = 2 for ms 0 (Neumann number).

For future reference, note that the translation funcipi,,, t) does not depend on the
source and observation locations. It is also noteworthy that a closed form expressio
'j;](plz, w), the Fourier transform (Appendix) @ (1), is available:

7 U S P - 30
n(p12 @) = m mZ:O€m(—l) m(T) cosm(—g¢n + ¢12)]. (30)

In this equation,J(-) is themth order Bessel function.
Combining Egs. (12) and (28), the following expressionﬁo(rpo, t) results:

Ny

Ape ) = > S[t—pzo'ckwn)}*H{%(plz,t)*(S{t—pSl':@n)}*fv(t)}. (31)

n=—N,

Given the sampled representationsfoft) in terms of local bandlimited interpolants,
the rightmost convolution can be carried out directly in the time domain (care shoulc
taken to avoid aliasing). Given in addition that the outgoing rays are band-limited and
both the outgoing rays and the translation function are essentially time-limited, the ce
convolution can be accomplished in the frequency domain through a fast Fourier trans
(FFT). The leftmost convolution can again be carried out in the time domain (variation:
this theme are possible).

2.3.3. Evaluation of the Hilbert transformln this section, an efficient technique for
evaluating the Hilbert transform within the context of Eq. (31) is described. Before |
ing so, the properties of the incoming rays—the signals within brackets in the disc
representation Eq. (31)—are examined more closely.

The outgoing rays that result from the rightmost convolution in Eq. (31) pass throt
the center of the source circle within the temporal interiyaH Rs/c, t,» + Rs/c], because
ps1 < Rs (Fig. 5a). It can be seen from Eq. (29) t&@&i(p4,, t) spans the temporal interval
[—Re/c, Re/c]. Therefore, upon convolving, (p;,, t) with the outgoing rays, the temporal
interval during which incoming rays pass through the center of the observation circl
[ty — (Rs+ Ro)/c, ty2 + (Rs + R)/c] (Fig. 5b). Although these incoming rays are time
limited, their Hilbert transform in general has an infinitely long temporal tail. The sigr
that results from Hilbert transforming the incoming ray, which consists of the actual fi
and the ghost signal, is also illustrated in Fig. 5b. The FFT cannot be directly invoke
compute the Hilbert transform because the spectral sampling rate has to be extremely h
produce accurate temporal waveforms. To overcome this difficulty, itis noted that the infi
temporal tail of the Hilbert transforms of the incoming rays is caused by the rapid varia
of their spectral content around DC. Hence, a multi-resolution spectral representatic
the incoming rays is considered.

Next, specific steps are described for efficiently evaluating the Hilbert transform wit
the context of the PWTD algorithm. To facilitate the description, the temporal origin
shifted to the center of the incoming rays. Then, the signal to be Hilbert transforme
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i / \ >
 — Rs/c b 1% Lo + Rs/c
(a)
. . actual signal
ncoming rays
fp !
;
t-(RA2RY)/ e ty Lo H(RA2R)/ e

ghost signal

(b)

FIG.5. Time sequence of plane wave expansion and Hilbert transform. (a) The relationship between subs
and its outgoing rays; (b) The relationship of incoming rays and the results after Hilbert transform.

virtually time-limited within [—t;, t;], and frequency-limited withinfw¢, w¢], where
t :Ts/2+ (Rs+ Rc)/c

First, the spectrum of the outgoing rays, sampled at a ratewn£ 7 /(x3t¢), is obtained
using an FFT. This spectrum is then multiplied with that of the pertinent translation funct
given by Eq. (30). Hereys > 1 is thespectal oversampling rat&he continuous spectrum
can be recovered by convolving the sampled representation with the local spectral i
polantP(w, tf, x3, ps) (Appendix). This interpolant becomes vanishingly small and can |
truncated whelw| > psAw. The interpolation error can be controlled and made arbitrari
small by increasings or xs. In what follows, however, it is assumed that< 2; hence,
accuracy is attained by increasipg

Second, the spectral samples are split into two sets. The first set consists of all sar
with frequencies satisfying| > psAw and is termed thaigh frequency sefThe second
set consists of @s + 1 samples that reside in the frequency intervap{Aw, psAw] and
is termed thdow frequency setSimilarly, the original spectrum is split into two spectra
The first spectrum results from convolving the high frequency setRith, t¢, xs, ps) and
is denoted HF. The second spectrum results from convolving the low frequency set w
P(w, tf, x3, Ps) and is denoted L&,

Third, the LEY spectrum is sampled at a rate»/2. This operation results in® + 1
samples. These samples are again splitinto high and low frequency sets. The former co
of the samples whose frequency satisfiels> psAw/2, and the latter consists op2+ 1
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samples that reside within the interval psAw/2, psAw/2]. The LEY spectrum is then
split into two spectra, H® and LF?, which result from convolvingP (o, 2t , x3, Ps)
with the above described sets of high and low frequency samples, respectively. This
is carried out recursively, a total dfec times. During thath recursionj =2, 3, ..., N,
spectrum LK) is sampled at a ratAw/2', interpolated usind (w, 2't, xs, pPs), and split
into high frequency spectrum MEY and low frequency spectrum EEY . This recursive
process above is illustrated in Fig. 6. The original spectrum is approximat&cby- 1
spectra H®, HF? | ..., HF(Neo and LRNeo,

Ny,

\ original spectrum

N

split
HF(I) LF( )]
N o
ﬂlp Split
A A HF® A LF®

N

ry S
Ye
I—
—
Ye

<

flip \lspht

Ye

\/ -

FIG. 6. lllustration of numerical evaluation of the Hilbert transform.
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Finally, the Hilbert transform of the incoming rays can be approximated by Hilbe
transforming the signals described by PR =1, 2, ..., Ny The temporal duration of
the signal described by the spectrum®B [—2'~1xat;, 2~ 1yst¢]. Itis easily verified that
the temporal duration of sgafHF®" is the same as that of HF. Therefore, a conventional
FFT scheme can be used to obtain the temporal signals corresponding agHigh(
i=1,2, ..., Nec (in practice, the use of the FFT is only required for HfFthe spectra
HF®,i =2 3..., N are fully described by s+ 1 samples and their transform can be
evaluated using a discrete Fourier transform). The sum of all these signals will approac
Hilbert transform of the outgoing rays with increasiNg.. The energy of the error, which
in essence is the energy of (&9, decreases exponentially fast with increasig.

2.3.4. Computational complexityThe computational cost associated with the evall
ation of the observer field has four components, resulting from the four stage sch
described in Subsection 2.2.

(i) Construction of outgoing raysAt each temporal sampling point, the source i
projected ontd (Ng) outgoing rays. Each subsignal consist€©iVl;) samples, and there
are N;/M; subsignals. Therefore, the computational cost associated with the construc
of the outgoing rays is

Cflf o (# of rayg x (# of subsignalsx (cost of projecting a subsignal

N, N
O(¢Mr

X N¢ Nt. (32)

(i) Construction of incoming raydranslation occurs everlyl; time steps. During
translation O (N, ) outgoing rays are translated a®dN,) incoming rays constructed. The
cost of one translation i®(M; log M;) provided that the convolution is effected using al
FFT and thafls « R./c. The latter assumption guarantees that the duration of the incom
rays is commensurate with that of the translation functions for the FFT to be an effic
means for carrying out the convolution. Therefore, the computational cost associated
the construction of the incoming rays is

Cﬁ X (# of directions x (# of traslations per dil’eCtiQI’)( (cost per trallslati@n
N —Nt M |Og M
X Ny
M ! !

< N¢ N¢ |Og N;. (33)

(iii) Construction of the Hilbert transforms of the incoming ragach incoming ray
is Hilbert transformed immediately following translation. The evaluation of the Hilbe
transform requires an FFT to calculate the spectrum of the incoming ray, and additi
filtering operations to decompose the spectrum of the incoming rays into a multires
tion basis. The cost of the FFT (M, log M;), because the lengths of incoming ray:
are proportional tavl;. The cost of decomposing the spectrum of the incoming rays intc
multiresolution basis is 0O ((Nrec + 1)(8ps + 1)) and is fixed. The inverse Fourier trans-
form of the high frequency spectrum RFis carried out using an FFT, resulting in a cos
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O(M¢ log My). All the other high frequency spectra are stored, and their contribution to
Hilbert transformed incoming rays is computed using a discrete Fourier transform, re:
ing in a cost that is 00 ((Nyec + 1) (8ps + 1)) per time step. In practice, their contributions
are computed immediately upon translation for “all ray samples that reside over the
server circle,” and new samples are added one by one, as the ray propagates throu
observer sphere. The dominant cost in this sequence of operation®idvihflog My). In
conclusion, the cost associated with the construction of the Hilbert transformed incor
rays is

Cf? o (# of direction$ x (# of traslations per directigornx (cost per Hilbert transforin
N
Ny — M logM
X Ng M 1 109 My
< N¢ N IOg Nt. (34)

(iv) Construction of the observer fielfinally, the superposition of all Hilbert trans-
formed incoming rays that impinge on a group are projected onto the individual obser
and summed up. This operation is the counterpart of that described under (i); hence it
scales as

Cit oc NgNg. (35)

The above cost estimates will be revisited in Section 3, where the computational compl
of PWTD augmented MOT solvers is studied.

2.4. Numerical Validation and Discussion

In this section, results from several numerical experiments are presented that valida
proposed algorithm. A single source and a single observation point are selected withi
source and observation circles shown in Fig. 3, wigese= 90°, R, =10 m, andRs = 0.5m.
The time signature of the source is Gaussian wfifH =e~~%*/2* wherety=10"8,

o =107, and we safely choosenax= 7 x 10° rad/s. The following parameters determing
the accuracy of the scheme, x2, x3, Pt, Ps, aNdNrec. In what follows, we fixyz =2, and
study the behavior of the error with respect to changes in the other parameters.

The field at the observation point computed by direct convolution (Eq. £))t), is
compared to that computed using the PWTD algorittawro(t). The L2 error of the
PWTD field is defined as

[2[An(t) — Apwro®]?dt

L2 error=
[0 AR (1) dt

(36)

In the first example, we picl; = 3.45 andp; = 15, which ensures that temporal samplin
errors are negligible (errors of this type were studied withn the context of the 3D PW
scheme, presented in [7]). The L2 error for different valueld,gf and ps is shown in Fig. 7,
where we assumg, =1 andN, = 24. As expected, for a fixellc, the error reaches a
lower limit as ps is increased, and vice versa. Optimal combinationd\fgs and ps can
be determined from this figure.
Figure 8 shows the behavior of the instantaneous field erfgy(t) — Apwro(t)| for

Nrec =5, 6, and 7, assuming that = 15 and that all other parameters remain fixed at the
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FIG. 9. L2 error for differenty,, whenNrec =6, ps =7, x1 =3.45, py =15.

above values. For these parameter choices, the error is mainly due to the chdigearid
Fig. 8 shows that the instantaneous error decreases Whgrincreases. The PWTD field
vanishes afteT;(Nec), and whert > T;(Nc), the error shown is nothing but the tail of the
actual field. The instantaneous error reaches its maximuR{df.c). It can also be shown
that whenN,ec increases by ond; (N ec) increases by about a factor of two, and the energ
in the error field drops by a factor of two.

Next, the effect of the choice ¢ is studied.The time signature of the source is a mol
ulated Gaussian pulsé;(t) = coSwot)e~t0%/20* wherewy = 10° rad/s. The maximum
frequencywmay is chosen to be 1.2 10° rad/s. WhenN,ec =6, ps =7, and all the other
parameters remain the same as before, the L2 error for diffeteist plotted in Fig. 9.
It is observed that the error decreases rapidly with increagingntil the error becomes
dictated by the other parameters.

Finally, we study the behavior of the error field throughout the observer circle. In t
experiment, six sources with identical temporal signatm{é?sare distributed evenly over
the perimeter of the source circle. In Fig. 10, the L2 error distribution is plotted through
a 3 m by 3 mbox, whose center coincides with that of the observation circle. The gent
logarithm of the L2 error is shown in different colors. Four different groups of paramet
are chosen as in Table I. The minimum L2 errors in the observation box are also shov
the table. This experiment demonstrates that through the proper choice of parametel
error introduced by the PWTD scheme can be made arbitrarily small.

3. COMPUTATIONAL COMPLEXITY OF PWTD ENHANCED MOT SCHEMES

This section describes two-level and multilevel PWTD enhanced MOT solvers. To
end, consider the 2D scatterer shown in Fig. 1. As discussed above, assuming th
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FIG. 10. The L2 error distribution within an observation box. The parameters are chosen as in Table I.

current on the scatterer is described in termNgfspatial unknowns for a total dN;
time steps, the computational cost associated with the analysis of this scattering pro
using classical MOT schemes scalesHNZN2). In the two-level PWTD enhanced MOT
scheme, the scatterer is divided into a large humber of small subscatterers and the P
scheme is invoked to evaluate interactions between the vast majority of subscatterer
To arrive at a multilevel PWTD enhanced MOT scheme, this algorithm is cast in a div
and conquer framework. The proposed schemes are quite similar to frequency domail
multipole algorithms [9, 10]. Subsections 4.1 and 4.2 describe two-level and multile
PWTD enhanced MOT schemes, with computational complexitie® @i2°N; log N;)
andO(NsN; log Ns log Ny), respectively.

TABLE |
The Parameters and Minimum L2 Error in Fig. 10

X1 X2 o ps Nrec  Minimum L2 error

(@ 20 04 8 5 6 0.0017
() 30 06 12 6 7 ®7x 10
(0 345 08 15 7 10 92x 10°
(d 345 10 15 8 12 B1x10°5
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3.1. Two-Level PWTD Enhanced MOT Scheme

To efficiently evaluate the field due to transient sources that reside on a 2D object L
the two-level PWTD algorithm, the object is enclosed into a fictitious square box, wh
is further subdivided into a large number of equally sized square boxes of circumscri
radius Rs. The set of sources that reside within a nonempty box is termed a grouy
Ny denotes the total number of nonempty boxes, then the average number of source
group isMs= Ns/Ng. In addition, if the scatterer is discretized using a fixed number
basis functions per shortest wavelength in the incident pulse, then it can be shown
Ms o Rswmax/C and Ny o Ms (see Eq. (27)). LeR; 4 denote the distance between th
centers of the boxes associated with grampside’, o, &’ =1, 2, .. ., Ng. A pair of groups
(o, &’) is termed a far-field pair iR .. > BRs and a near-field pair iR; o < 8Rs Where
B is a constant that is typically chosen in the range8< 6. LetFF andNF denote the sets
of all far- and near-field pairs, respectively. The numbers of far-field pairs sc@el‘s@),
and the number of near-field pairs @gNy).

If two groups constitute a far-field pair, the 2D PWTD scheme is invoked to evalu
the field due to sources associated with one group at observers in the other group, an
versa. LetM; min denote the number of samples that describe the longest possible subs
that can be used within the PWTD scheme when considering the far-field pair with
smallestR. ,, . It follows from Egs. (19) and (23) thafl; yin is given by

Mumin = Min_{1(Reu — 2Re)/(CAD — 2P +1]]. (37)

If, for a given choice ofp;, Eq. (37) yields a negativiel; min, theng needs to be increased to
enlarge the near-field region. If Eq. (37) yields a posiMgnin, then, at lest for a sufficiently
large 8, M¢ min Will be of O(RsAt/c). The number of samples that feature in the PWTI
based evaluation of fields exchanged between other far-field pairs is computed as

Mt,aa/ = Ngo Mt,minv (38)

where the integem,,, is given by

- {(Rc,aa/ — 2R))/(cA — 2px +1 J | 39

Mt,min

Equation (38) guarantees that outgoing rays that are compris@dMf ,,-) samples fea-
turing in the PWTD based computation of fields exchanged between gaoapda’ can
be constructed by splicing,, shorter rays, each described 8YM; min) Samples. This
construction results in considerable computational savings because outgoing rays ne
be constructed from scratch when considering different far-field pairs. With this proy
in mind, Eq. (38) also maximizes the length of the outgoing rays for each far-field p
This implies that the convolution of the outgoing rays and translation functions car
effected using an FFT i@ (M 4o 10g Mt 4or) Operations. Indeed, the translation function
span the temporal intervaHR. 4o/ /C, Re.a'/C] (S€E EQ. (29)), Which, in view of the above
construction, can be shown to be proportionaMg,, At. Therefore, both the outgoing
rays and the translation fuctions are describedg; ..-) Samples, and hence they car
be convolved efficiently using an FFT.



180 LU ET AL.

The computational cost associated with the evaluation of all far-field interactions has
components, resulting from the four-stage scheme described above.

(i) Construction of outgoing ray#\t each temporal sampling point, each and ever
source in every group is projected onto outgoing rays. Therefore, the computational
associated with the construction of the outgoing rays is

Cq-t oc (# of far-field groups x (# of source points per groyix C#

X Ng M5N¢ Nt
2

Ng

(ii) Construction of incoming raysncoming rays are constructed for all far-field
pairs. Therefore, the computational cost associated with the construction of the incot
rays is

TL,2 2
Cyp " x E Cq
oo

< NZN,N; log N;
o NgNsN; log Ny (41)

(iif) Construction of the Hilbert transforms of the incoming ray#bert transformed
incoming rays are constructed immediately following a translation, i.e., following the c
struction of the incoming rays. Therefore, the cost associated with the construction o
Hilbert transformed incoming rays is

TL,3 3
Gy~ E Cx
o,

< NZNyN; log Ny
oc NgNsN; log Ny. (42)

(iv) Construction of the observer fielBinally, the superposition of all Hilbert trans-
formed incoming rays that impinge on a group are projected onto the individual obser
and summed up. This operation is the counterpart of that described under (i); hence its
scales as

CTL,4 st
Th4 o =N, (43)
Ng

If two groups constitute a near-field pair, the PWTD scheme cannot be invoked dire
There reside approximatelyls sources in each group, and tMZ interactions between
sources and observersresiding in these two groups need to be evaluated one by one. Alt
the computational cost for classically evaluating one such interaction scalEs\s (see
Subsection 2.1), this cost can be reduce®td\; log N;). This cost reduction is achieved
by invoking the PWTD scheme for each near-field source-observer pair, in th&limit0.
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It follows that the computational cost for evaluating the near-field scales as

Cht o Z (# of interactions for one near field paix Cn
(a,a’)eNF

o NgM2N; log N
ocN—SZNI
i 10g Nt (44)
Ng

In conclusion, the total computational c&t- for a two-level scheme is
TL1 TL,2 TL,3 TL,4
Ct=cCg ' +C-*+Ce° +Ce-*+ClE. (45)

It can be verified that the choiddg oc /Ns minimizesC™, and that with this choice of
group sizeCT™ is of O(N2°N; log Ny).

3.2. Multilevel PWTD Enhanced MOT Scheme

Cost savings beyond those achieved by the two-level PWTD enhanced MOT sck
result from casting the PWTD scheme into a divide and conquer framework, wher
groups are aggregated into larger entitites before translation.

As in the two-level scheme, the scatterer is enclosed in a square box. This box is r
sively subdivided into four equally sized square boxes, a tofd] ifnes. A box thatis subdi-
vided into smaller boxes is termed tha&rentof thechildboxes that result from the operation
The smallest box is termedevel onebox, and the sources residing within a level one bc
are termed &vel one grouphigher level boxes and groups are defined similarly. For leve
I=1,..., N, let Ng(l) denote the number of groups (nonempty boxbk)| ) the average
number of sources in each grougy(l) the circumscribing radius of a leviebox, andNy (1)
the number of directions required in the construction of the translation functions. It follc
from the discussion of the two-level scheme tNgtl ) &« Rs(l)wmax/C o Ms(l). Itis obvious
thatRs(I + 1) = 2Rs(l), thatMs(l + 1) =2Ms(l), and thalNg (I 4 1) = Ng(1)/2. In addition,

N is always chosen such that a level one group conf@ifiy sources, which implies that
N 2 log Ns, that Ng(1) o< Ng, that Ms(1) oc 1, thatNg(N;) oc 1, and thatMs(N;) o< Ns; it
then also follows thalNg(1) Ms(l) oc Ns.

Next, consider all group pairs«{«’), where bothy anda’ reside at the same level. A
pair (@, ') is termed devel | far-field pairprovided thatR; .. > BRs() and that their
respective parent groups do not from a ldwel1 far-field pair. A pair of groups that resides
at level one and whose respective parent groups do not form a level two far-field pz
termed anear-field pair The number of far-field pairs at levels proportional toNg(l),
and the number of near-field pairs is proportionaNy1) o< Ns. In what follows, let~F(l)
andNF denote the sets of all levelfar- and near-field pairs, respectively. The multileve
PWTD scheme will effect interactions between all far-field pairs.

As in the two-level algorithm, the PWTD scheme is invoked to evaluate all interactic
involving far-field pairs. In the multilevel scheme, the number of samples that describe
longest possible subsignal that can be used within the PWTD scheme when consid
the nearest by level one far-field paitd; min(1), follows from Eg. (37) withFF replaced
by FF(1). Defining M min(l + 1) = 2M; min(l), the number of samples that feature in th
PWTD based evaluation of fields exchanged between Ideglfield pair ¢, ¢’), M; o0 IS
computed using Egs. (38) and (39) with min replaced byM; min(l). Like in the two-level
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algorithm, this construction again guarantees that outgoing rays alk tesebe constructed
effectively by splicing fundamental rays described ®@yM; min(l)) samples. In addition,
fundamental rays at leveh- 1 can be obtained by splicing two fundamental outgoing ra:
at levell.

Fundamental outgoing rays are constructed as follows. At level 1, the outgoing |
are constructed by directly projecting sources onto a set of directions, as in the two-|
algorithm. At higher levels, outgoing rays are constructed by (i) splicing two consecu
outgoing rays, (ii) interpolating these rays to a set of directions that is roughly twice
dense(Ny (I + 1) = 2N, (1)), and (iii) translating these rays from the box center to that «
its parent box (this means that every ray is time delayed or advanced based on its dire
w.r.t. the vector connecting the box centers involved). A similar process, but in reve
order, is carried out when going down the multilevel tree: incoming rays at lower levels
constructed from those at higher levels via ray resection (the opposite of ray splicing)
anterpolation (or filtering) to reduce the number of angular components.

As always, the cost for computing all interactions between far-field elements compr
four components:

(i) Construction of outgoing ray#t level 1, outgoing rays are constructed as in th
two-level scheme. At levél> 2, the outgoing rays are constructed as described above.
cost of splicing, interpolating, and projecting at all levels is

Ny
citt o Z Ci+ Z Z {(# of directions at levell)
(@, eFF(L) =2 (@,a")eFF()

x (# of projections at levdl) x (length of each projection at levigh
N

N
o¢ Ng(D)Ng (1) Mt min(D) + {Ng (HN, (I)Mt—f(l) Mt,mma)}
=2 ,min
Ny
o > {Ng(HMs ()N}
1=1
o NsNi log Ns. (46)

(i) Construction of incoming ray#t level |, translations for a far-field group pair
(o, ') occur everyM; o o (1) time steps with a complexity o®(Ng(1)N; log N;), as dis-
cussed in the two-level case, hence

aay{ ¥

=1 (a,0”)eFF(l)

N
< { > N¢(I)NtlogNt}

=1 (o, ”)eFF(l)

I\
o > {Ng(HMs(1)Nc log Ni}

=1
N

o > {NsN; log Ny}

I=1
o NsN; log Nglog N;. 47)
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(iif) Construction of Hilbert transformed incoming rayss in the two-level algorithm,
a Hilbert transform is carried out after each translation. The computational cost of
operation scales as

@y { ¥ al

=1 (a,a’)eFF(l)

N
< { > N¢<I>NtlogNt}

1=1 (a,a”)eFF(l)

N
o Y {Ng(HMs()Nc log Ni}
1=1
N
oc ) {NsNilog Ny}
=1
o NsN¢ log Ng log N;. (48)

(iv) Construction of observer fiel@he cost of this operation scales as thatﬁf'f’l:
CH"* o NsN log Ns. (49)

For a near-field pairad(, «’), the interactions between the spatial unknowns within the
should be evaluated in a pointto point manner. Similar to the near-field partin Subsectior
the cost for computing one near-field interaction can be reducgd(f) by using a
Hilberttransformed plane wave expansion. The computational cost for near-field evalua
therefore scales as

CM- Z (# of interactions) (cost of computing one interaction)
(a,a’)eNF

o« Ng(D)M2(1) Ny

It is seen thaC}"-? andC}"* scale worse than all other costs involved in the multilev
PWTD. It is concluded that the total cost associated with a multilevel PWTD enhan

MOT solver, viz.
CML — Cf'\f/lL’l + Cfl\r/IL,Z + Cfl\f/IL,S + C#ALA + CII:/IfL’ (51)

scales a®©(NsN; log Ng log N;).

4. CONCLUSIONS

This paper outlined the 2D PWTD algorithm which permits the rapid evaluation
linear transient wave fields generated by 2D source configuration. A four-stage aggrege
translation-disaggration scheme was developed that relies on an expansion of the wav
in terms of a Hilbert transformed plane wave spectrum. Numerical experiments show
the error of this algorithm can be controlled and be made arbitrarily small by the prc
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choice of parameters. The proposed PWTD scheme can be coupled to classical time d
integral equation based solvers. For a two-dimensional surface scattering problem mo
in terms of Ng spatial unknowns for a total of; time steps, two-level and multilevel
integral equation based solvers, developed on the basis of the method proposed in this
exhibit the computational complexities @(NX2°N; log N;) and O(NsN; log Nslog Ny),
respectively. Therefore, these PWTD schemes make feasible the rapid integral equ
based analysis of scattering from large surfaces. These schemes can also be used
construction of fast global absorbing boundary condition for truncating grids used in
finite difference modeling of wave phenomena. We are currently studying these and val
other applications of these schemes.

APPENDIX: VARIOUS DEFINITIONS

In this paperu(x) andP(x, y) denote Heaviside step and pulse functions defined as

u(x) = {2 i ) 8 (A1)
PX,y) =uX+y) —uxX—1yY). (A.2)

In addition, 7 (-) andF~1(-) define the Fourier transform and its inverse, respectively,

flw)=FfM) = [T f e itdt
N . (A.3)
f)=F ()} =2 [T fwe do.
The Hilbert transform is denoted By(.),
+00
H{f ()} = 1 ][ T de, (A.4)
) o t—a

where the symbof stands for principle value integral. The Hilbert transform can be al.
be expressed as

H{f ()} = FH{—] sgnw)F[ f )]}, (A.5)

where In(-) denotes the “imaginary part of,” and sgh{s the sign function

1, x>0
sgnx) = { 1 <0, (A.6)

Finally, the following interpolation function is a variant of the one originally proposed |
Knab [15],

. —
P(t, Wmaxs X » p) = ﬂ Sindwot) Sln{QpAt\/W} ’
wf sinh(QpAt)+/(t/pAt)2 — 1

(A7)
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where

wf = X Wmax

T
At = —

wt

(A.8)
O (x+D
Wo = Wmax—7
2
x—-21

Q= wmaXXT.

The functionP (t, wmax X, P) can be used to locally interpolate functions of bandwidt
wmax IN terms of 20+ 1 samplesP(t, wmax x, p) is virtually time-limited and vanishes
for |t| > pAt. P(t, wmax X, P) IS also band-limited ta ¢ . The truncation error due to local
interpolation decreases exponentially fast with increaging
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