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This paper presents a novel scheme to efficiently evaluate transient linear wave
fields that are generated by two-dimensional (2D) source configurations. The scheme,
termed the plane wave time domain algorithm (PWTD), realizes a diagonal trans-
lation operator for 2D transient wave fields through their representation in terms of
Hilbert transformed plane wave expansions. Numerical results are presented that val-
idate the algorithm and demonstrate its convergence properties. The proposed PWTD
algorithm can be coupled to classical 2D time domain integral equation solvers in a
two-level and multilevel setting. It is shown that analysis of a 2D surface scattering
phenomenon, in which sources are represented in terms ofNs spatial andNt tem-
poral samples, based on two-level and multilevel PWTD augmented integral equa-
tion solvers, requiresO(N1.5

s Nt log Nt ) and O(NsNt log Ns log Nt ) computational
resources, respectively (as opposed toO(N2

s N2
t ) for a classical solver). Therefore,

these PWTD schemes render feasible the rapid integral equation based analysis of
2D transient scattering phenomena involving large surfaces.c© 2000 Academic Press

Key Words:integral equations; time domain; plane wave time domain (PWTD);
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1. INTRODUCTION

Accurate and efficient techniques for analyzing transient linear wave phenomena are of
interest to disciplines ranging from acoustics to electromagnetics to geophysics [1, 2]. In the
past, significant efforts have been expended on the development of integral equation based
methods for analyzing transient two-dimensional (2D) surface scattering phenomena, the
vast majority of which can be classified as marching on in time (MOT) schemes [3–6]. Un-
fortunately, all these methods suffer from a high computational complexity, which severely
limits their application to practical, real-world problems.
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To accelerate the integral equation based analysis of three-dimensional (3D) transient
scattering phenomena, our group recently developed the 3D plane wave time domain
(PWTD) algorithm [7, 8], which can be considered the extension of the 3D frequency
domain fast multipole method [9, 10] to the time domain. The 3D PWTD algorithm permits
the fast evaluationof transient linear wave fields that are generated byknown3D source
configurations. In addition, when coupled to 3D MOT solvers, the 3D PWTD algorithm
permits thefast reconstruction of unknown3D source configurations that generate the fields
scattered from an object. In other words, 3D PWTD enhanced MOT solvers permit the rapid
solution of transient 3D surface scattering problems.

In this paper, we propose a 2D PWTD algorithm, i.e., an extension of our previous work
from 3D to 2D. The 2D time domain Green’s function for the wave equation, in contrast
to its 3D cousin, is not localized in time and has an infinitely long temporal tail, which
complicates the construction of the 2D PWTD scheme. When used in conjunction with an
MOT solver [3–5], the 2D PWTD method drastically accelerates the solution of transient
2D scattering problems.

Consider an impenetrable or penetrable but homogenous object of invariant cross sec-
tion, extending along thez-axis, and residing in a homogeneous medium with wave speedc
(Fig. 1). Assume that the maximum transverse linear dimension of this object isD, that the
object is excited by az-invariant transient incident field with temporal bandwidthωmax, and
that the surface sources induced by the incident field are represented usingNs∝ Dωmax/c
and Nt ∝ Tωmax spatial and temporal samples, whereT is the total temporal duration of
the analysis. The computational cost associated with the integral equation based analy-
sis of this scattering problem using classical MOT methods scales asO(N2

s N2
t ). The 2D

PWTD algorithm developed in this paper adopts a plane wave expansion to arrive at a
diagonal translation operator for transient 2D wave fields that permits the rapid evaluation
of fields due to surface bound source densities. It will be shown that two-level and multi-
level PWTD enhanced MOT algorithms permit the analysis of 2D scattering phenomena in
O(N1.5

s Nt log Nt ) andO(NsNt log Ns log Nt ) operations. It is anticipated that these PWTD
enhanced MOT schemes will render feasible the fast analysis of 2D transient scattering
phenomena involving large and complex surfaces.

FIG. 1. Sketch map of two-dimensional scattering.
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We wish to note that the proposed scheme is not the first attempt at constructing a fast
method for evaluating 2D wave fields due to known sources. First, Crutchfield proposed
a scheme that, in spirit, is similar to the one outlined in this paper [11]. In contrast to our
scheme, however, Crutchfield’s does not allow for a systematic elimination of ghost sig-
nals associated with time domain plane wave expansions. Second, Alpertet al.proposed a
technique for rapidly evaluating nonreflecting boundary kernels for time domain wave prop-
agation [12]. However, their scheme applies only to circular source distributions, whereas
ours applies to arbitrarily shaped configurations.

This paper is organized as follows. The proposed PWTD scheme for reconstructing 2D
wave fields due to known sources is presented in Section 2. This section also discusses the
accuracy and convergence properties of this algorithm. The computational complexity of
two-level and multilevel PWTD enhanced MOT solvers is analyzed in Section 3. Finally,
Section 4 summarizes the conclusions of this study. A variety of definitions, including
those for the Fourier and Hilbert transforms and a local interpolation function that is used
extensively in this study, is provided in Appendix.

2. THE TWO-DIMENSIONAL PLANE WAVE TIME DOMAIN ALGORITHM

This section describes the 2D PWTD algorithm for evaluating transient fields due to
two-dimensional source distributions. Subsection 2.1 introduces notation and analyzes the
computational complexity of a traditional 2D MOT scheme. Subsection 2.2 describes a
representation of the transient field produced by a two-dimensional source configuration
in terms of a Hilbert transformed plane wave expansion and a condition that permits a
ghost free recovery of the field from this expansion. The 2D PWTD algorithm, including a
temporal sampling scheme for sources and fields, a closed form expression for a diagonal
translation operator for 2D wave fields, and a method for efficiently evaluating the Hilbert
transform within the context of the PWTD scheme, are discussed in Subsection 2.3. Finally,
Subsection 2.4 describes a variety of numerical experiments that validate the algorithm.

2.1. Preliminaries

Consider a fieldA(r, t) that satisfies the 2D wave equation,

∇2A(r, t)− 1

c2

∂2

∂t2
A(r, t) = −J(r, t), (1)

whereJ(r, t) is the source distribution and the operator∇2= (∂2/∂x2+ ∂2/∂y2).
The field at an observerro can be expressed as

A(ro, t) =
∫

C
dr′J(r′, t) ∗ g(|ro − r′|, t), (2)

whereC is the contour of the scatterer’s cross section on which the sources reside,∗ denotes
temporal convolution,g(·,·) is the 2D Green’s function

g(ρ, t) = 1

2π

u(t − ρ/c)√
t2− (ρ/c)2 , (3)

andu(·) is the Heaviside step function (Appendix).
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Assume for the moment thatJ(r, t) consists of a single line source located atrs with
temporal signaturef (t) of approximate durationT and bandwidthωmax, i.e.,

J(r, t) = f (t)δ(r− rs), (4)

where f (t)∼= 0 outside the interval 0≤ t ≤ T . From Eq. (2), the field atro due to this source
can be expressed as

A(ro, t) = f (t) ∗ g(ρso, t), (5)

whereρso= |rso| andrso= ro − rs.
To study the computational cost associated with the evaluation of Eq. (5), assume that

the band-limited source signaturef (t) is represented in terms ofNt ∝ Tωmax temporal
samples. It is easily verified that, for arbitraryrs andro, the cost of directly evaluating the
right hand side of Eq. (5) for a total number ofNt temporal samples scales asO(N2

t ). Next,
consider the 2D transient scattering problem described in the Introduction to this paper.
The computational cost associated with the integral equation based analysis of this problem
scales asO(N2

t N2
s ). This complexity estimate is arrived at as follows. MOT-based integral

equation solvers construct consecutive temporal snapshots of the source distributions that
generate the fields scattered by an object by requiring that the sum of the incident and
scattered fields satisfies a given instantaneous boundary condition on the scatterer surface.
By virtue of Eq. (5), the scattered fields depend on the past values of the surface sources.
The evaluation of the instantaneous scattered field observed at a single location on the
surface calls for the evaluation of the convolution in Eq. (5) for all theNs sources and
can be accomplished inO(NsNt ) operations. Therefore the cost of calculating the scattered
fields over the scatterer’s surface scales asO(Nt N2

s ). Once these fields have been evaluated,
instantaneous source distributions can be computed, which in turn permits the MOT solver
to consider the next time step. The MOT scheme incurs the above cost for each of theNt

time steps, hence theO(N2
s N2

t ) complexity estimate. This computational cost prohibits the
analysis of large-scale scattering problems.

2.2. The 2D Plane Wave Expansion

To reduce the computational cost associated with the evaluation of the convolution in
Eq. (5) for all source-observer pairs in a classical MOT algorithm, a plane wave expansion
of the source field, similar to that introduced in [7, 8], is considered next.

To represent the source field in terms of a plane wave basis, the source signalf (t) is
broken up intoNv consecutive subsignalsfv(t), v= 0, 1, . . . , Nv − 1, as

f (t) =
Nv−1∑
v=0

fv(t). (6)

As depicted in Fig. 2, it is assumed thatfv(t)∼= 0 for t < tv1 andt > tv2, i.e., that fv(t) starts
attv1 and ends attv2, and that all subsignalsfv(t) are of equal durationTs= tv2− tv1. A com-
putational scheme for achieving decomposition (6) will be described in Subsection 2.3.1.
Let Av(ro, t) denote the field atro due to the line source atrs with temporal signaturefv(t),
then

Av(ro, t) = fv(t) ∗ g(ρso, t), (7)
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FIG. 2. The original signal and subsignals.

and therefore

A(ro, t) =
Nv−1∑
v=0

Av(ro, t). (8)

To construct a plane wave representation of the source field, consider the signalI fv (rso, t)
defined as

I fv (rso, t) =
1

4π

∫ 2π

0
fv(t − rso · k̂(φ)/c) dφ, (9)

wherek̂(φ)= x̂ cosφ+ ŷ sinφ. It is easily shown that

I fv (rso, t) = fv(t) ∗ Iδ(rso, t), (10)

whereIδ(rso, t) is

Iδ(rso, t) =
1

4π

∫ 2π

0
δ(t − rso · k̂(φ)/c) dφ

= 1

2π

P(t, ρso/c)√
(ρso/c)2− t2

. (11)

Here,P(·,·) is a unit pulse function (Appendix).
Now, let Ãv(ro, t) denote the Hilbert transform (Appendix) ofI fv (rso, t),

Ãv(ro, t) = H
{

I fv (rso, t)
} = fv(t) ∗ g̃(ρso, t). (12)
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In the above equation,̃g(ρso, t) denotes the Hilbert transform ofIδ(rso, t) [2],

g̃(ρso, t) = H{Iδ(rso, t)} =
u(t − ρso/c)− u(−t − ρso/c)

2π
√

t2− (ρso/c)2
. (13)

Comparison of Eqs. (3) and (13) establishes the following relationship betweeng(ρso, t)
andg̃(ρso, t),

g(ρso, t) =
{

g̃(ρso, t), t ≥ 0

0, t < 0.
(14)

From Eqs. (7), (12), and (13), it is seen thatÃv(ro, t) is closely related to the actual field
Av(ro, t). Specifically, it follows from Eq. (13) that̃g(ρso, t) is composed of two parts:
g(ρso, t) and animagewith respect to the temporal origin. Therefore,Ãv(ro, t) is also
composed of two parts: the actual signalAv(ro, t) and an image, which will be referred to
as theghost signal. This observation closely follows that in [2].

To exploit Eq. (12) in the construction of a fast scheme for evaluatingAv(ro, t), assume
that rs resides within a source circle centered aroundr1, and thatro resides within an
observation circle centered aroundr2 (Fig. 3). Assume that these two circles have the
same radiusRs. Next, a scheme is described for representing the observer field in terms
of Hilbert transformed plane wave expansions through adiagonaltranslation operator. The
scheme is designed to facilitate its incorporation into MOT based integral equation solvers,
which, as will be demonstrated below, guarantees that the above described ghost signal is
automatically eliminated by time-gating.

If the vector connecting the source and the observation points is expressed as

rso = (ro − r2)+ (r2− r1)+ (r1− rs)

= r2o + r12+ rs1, (15)

FIG. 3. Geometry under study.
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then Eq. (9) can be cast in the form

I fv (rso, t)=
1

4π

∫ 2π

0
δ

[
t− r2o · k̂(φ)

c

]
∗δ
[
t− r12 · k̂(φ)

c

]
∗δ
[
t− rs1 · k̂(φ)

c

]
∗ fv(t) dφ.

(16)

Using Eq. (12), and the fact that the Hilbert transform commutes with the temporal convo-
lutions, the following expression for̃Al (ro, t) results:

Ãv(ro, t) =
1

4π

∫ 2π

0
δ

[
t − r2o · k̂(φ)

c

]
∗H
{
δ

[
t − r12 · k̂(φ)

c

]
∗ δ
[
t − rs1 · k̂(φ)

c

]
∗ fv(t)

}
dφ. (17)

This equation suggests the following four-stage scheme for evaluatingÃv(ro, t):

(i) Construction of outgoing rays.For every direction̂k(φ), evaluate the rightmost
convolution appearing in Eq. (17) betweenfv(t) andδ[t − rs1 · k̂(φn)/c]. This operation
imposes a direction dependent temporal shift onfv(t). The resulting signals are termed
outgoing rays, and each ray describes a plane wave emanating from the source circle in the
k̂(φ) direction.

(ii) Construction of incoming rays.For every direction̂k(φ), carry out the center con-
volution appearing in Eq. (17) between the outgoing rays andδ[t − r12 · k̂(φ)/c]. This
operation translates outgoing rays between the centers of the source and observation cir-
cles. The resulting signals are termed incoming rays, and each ray describes a plane wave
impinging on the observer circle from direction−k̂(φ).

(iii) Construction of Hilbert transformed incoming rays.For every direction̂k(φ),
evaluate the Hilbert transform of the incoming ray.

(iv) Construction of the observer field.For every direction̂k(φ), evaluate the leftmost
convolution appearing in Eq. (17), i.e., convolve the Hilbert transform of the incoming rays
with δ[t − r2o · k̂(φ)/c] and add up the resulting signals for allk̂(φ), i.e., carry out the
integration in Eq. (17). This operation projects the Hilbert transform of the incoming rays
onto the observers by imposing appropriate temporal shifts.

As mentioned previously, the observer signalÃv(ro, t) constructed through the above se-
quence of operations will be corrupted by a ghost signal. To render the above scheme useful
within an MOT based integral equation solver, assume that steps (ii) and (iii) are effected
only at t = tv2. In other words, assume that the signalsÃv(ro, t) are explicitly time gated
out for t < tv2. Note that, fort > tv2, the outgoing rays are completely formed and move out
from the center of the source circle with speedc; hence, the above assumption simplifies
the execution of steps (ii)–(iii). Next, note that the earliest time of arrival of the actual signal
in the observer circle associated with a source with temporal signaturefv(t) residing in the
source circle is

ta = Rc − 2Rs

c
+ tv1

= Rc − 2Rs

c
+ tv2− Ts. (18)
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Since Ãv(ro, t) will only be observed in the observer circle fort ≥ tv2, it is required that
ta≥ tv2, as otherwise part of the true signal would be discarded, which would be an undesired
byproduct of the above suggested scheme. Therefore, it follows from Eq. (18) that

Ts ≤ Rc − 2Rs

c
. (19)

Equation (19) guarantees that none of the actual signal is dismissed due to time gating.
However, what about the ghost signal? Will it be observed? From Fig. 4, which depicts
I fv (rso, t) and Ãv(ro, t), it is seen that the ghost signal vanishes aftertv2− ρso/c< tv2.
Hence, if translations only take place aftert = tv2, then condition (19) also guarantees that
only actual fieldsAv(ro, t) are observed, i.e.,Av(ro, t)= Ãv(ro, t) for t > tv2. Therefore,
the above described sequence of operations guarantees a ghost free recovery of the field
due to an arbitrary configuration of sources distributed over the source circle throughout
the observer circle.

FIG. 4. Illustration for PWTD algorithm. (a) The source subsignalfv(t); (b) g̃(ρso, t); (c) the plane wave
expansion offv(t); (d) result of the convolution betweenfv(t) andg̃(ρso, t).
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2.3. Computational Aspects

To efficiently evaluateAv(ro, t) using the above described algorithm, computational
schemes are needed to decompose the source signal into subsignals as described by Eq. (6),
to carry out the convolutions and the angular integration appearing in Eq. (17), and to
evaluate the Hilbert transform. Subsections 2.3.1, 2.3.2, and 2.3.3 address these issues in
turn. The computational complexity of this scheme within an MOT solver is analyzed in
Subsection 2.3.4.

2.3.1. Temporal sampling and representation.This section describes a technique for
breaking up the source signal into a set of subsignals. This decomposition is called for
because Eq. (19) imposes a maximum duration on the signal that can be translated ghost
free from the source to the observer circle. Becausef (t) is band-limited, each subsignal
fv(t) can be described byMt samples off (t), as

fv(t) =
(v+1)Mt−1∑

k=vMt

f (k1t)ψk(t), (20)

whereψk(t) is a time shifted local interpolant, and the choice ofMt will be discussed later.
Many good choices ofψk(t) exist; however, in this study, we choose

ψk(t) = P(t − k1t, ωmax, χ1, pt ), (21)

whereP(t, ωmax, χ1, pt ) is an approximate prolate spheroidal interpolant (Appendix). The
interpolantP(t, ωmax, χ1, pt ) is band-limited toω f =χ1ωmax. The temporal oversampling
ratioχ1> 1 is related to the sampling rate as1t =π/(χ1ωmax). As stated in the Appendix,
P(t, ωmax, χ1, pt ) is virtually time-limied and, for all practical purposes, only 2pt + 1 sam-
ples ofψk(t) are required in the interpolation described by Eq. (20). The error of this local
interpolation can be controlled and made arbitrarily small by increasingχ1 or pt . As a result,
the above construction indeed guarantees thatfv(t)∼= 0 whent < tv1 andt > tv2, where

{
tv1 = (vMt − pt )1t

tv2 = [(v + 1)Mt − 1+ pt ]1t.
. (22)

As each subsignalfv(t) is essentially time-limited with durationTs, Eqs. (19) and (22)
imply that Mt should satisfy

Mt ≤
⌊

Ts

1t
− 2pt + 1

⌋
, (23)

where theb·c denotes the nearest smaller interger.
The above scheme not only accomplishes the decomposition (6) (because of the local

nature of the interpolantsψk(t)), but also permits the efficient evaluation of the convolutions
and angular integrations appearing in Eq. (17) because theψk(t) has a finite bandwidth, as
discussed next.

2.3.2. Diagonal translation operators.To efficiently evaluate the angular integral in
Eq. (17), i.e., to replace the angular integration in Eq. (17) by a finite sum, consider the
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signal p(t, φ) defined as

p(t, φ) = δ
[
t − r2o · k̂(φ)

c

]
∗ δ
[
t − rs1 · k̂(φ)

c

]
∗ fv(t). (24)

This signal can be interpreted as the transient far-field radiation pattern of a source located
atrs1+ r2o, which is always less than 2Rs in magnitude. Since the angular variation in the
radiation pattern of such a source distribution is quasi band-limited [13, 14],p(t, φ) can be
represented in terms of 2Nφ + 1 samples as [13]

p(t, φ) =
Nφ∑

n=−Nφ

p(t, φn)D(φ − φn), (25)

whereD(φ) represents the Dirichlet kernel

D(φ) = sin[(2Nφ + 1)φ/2]

(2Nφ + 1) sin(φ/2)
= 1

2Nφ + 1

Nφ∑
m=−Nφ

ejmφ, (26)

andφn= n2π/(2Nφ + 1).
In the above, the parameterNφ can be chosen as

Nφ =
⌈
χ ′2
ω f

c
(2Rs)

⌉
, (27)

whered·edenotes the nearest larger integer, andχ ′2 is termed theangular oversampling ratio.
The expansion in Eq. (25) converges very fast with increasingχ ′2. Note thatNφ is closely
related toω f =χ1ωmax, the bandwidth of the subsignalfv(t), as well asχ ′2. Henceforth, the
parameterχ2=χ1χ

′
2 will be used as the combined oversampling ratio in dealing withNφ .

Combining Eqs. (16), (24), and (25) yields

I fv (rso, t) =
1

4π

∫ 2π

0
δ

[
t − r12 · k̂(φ)

c

]
∗
[ Nφ∑

n=−Nφ

p(t, φn)D(φ − φn)

]
dφ

=
Nφ∑

n=−Nφ

p(t, φn) ∗ Tn(r12, t)

=
Nφ∑

n=−Nφ

δ

[
t − r2o · k̂(φn)

c

]
∗ Tn(r12, t) ∗ δ

[
t − rs1 · k̂(φn)

c

]
∗ fv(t), (28)

where

Tn(r12, t) =
1

4π

∫ 2π

0
δ

[
t − r12 · k̂(φ)

c

]
D(φ − φn) dφ

= 1

4π(2Nφ + 1)

Nφ∑
m=−Nφ

∫ 2π

0
δ

[
t − Rc cosφ

c

]
ejm(φ−φn+φ12) dφ

= 1

2π(2Nφ + 1)

c

Rc

Nφ∑
m=0

εm cos[m(−φn + φ12)]
Tm(ct/Rc)√
1− (ct/Rc)2

P

(
t,

Rc

c

)
.

(29)
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TheTn(r12, t) appearing in the above equation is termed the plane wave translation function
between the centers of the source and the observation circles,Tm(·) is the Chebyshev
polynomial of degreem, Rc= |r12|, φ12 is the angle betweenr12 andx̂ (Fig. 3), andεm= 1
for m= 0; εm= 2 for m 6= 0 (Neumann number).

For future reference, note that the translation functionTn(r12, t) does not depend on the
source and observation locations. It is also noteworthy that a closed form expression for
T̃n(r12, ω), the Fourier transform (Appendix) ofTn(t), is available:

T̃n(r12, ω) =
1

2(2Nφ + 1)

Nφ∑
m=0

εm(− j )mJm

(
ωRc

c

)
cos[m(−φn + φ12)]. (30)

In this equation,Jm(·) is themth order Bessel function.
Combining Eqs. (12) and (28), the following expression forÃl (ro, t) results:

Ãv(ro, t) =
Nφ∑

n=−Nφ

δ

[
t − r2o · k̂(φn)

c

]
∗H
{
Tn(r12, t)∗ δ

[
t − rs1 · k̂(φn)

c

]
∗ fv(t)

}
. (31)

Given the sampled representations offl (t) in terms of local bandlimited interpolants,
the rightmost convolution can be carried out directly in the time domain (care should be
taken to avoid aliasing). Given in addition that the outgoing rays are band-limited and that
both the outgoing rays and the translation function are essentially time-limited, the center
convolution can be accomplished in the frequency domain through a fast Fourier transform
(FFT). The leftmost convolution can again be carried out in the time domain (variations on
this theme are possible).

2.3.3. Evaluation of the Hilbert transform.In this section, an efficient technique for
evaluating the Hilbert transform within the context of Eq. (31) is described. Before do-
ing so, the properties of the incoming rays—the signals within brackets in the discrete
representation Eq. (31)—are examined more closely.

The outgoing rays that result from the rightmost convolution in Eq. (31) pass through
the center of the source circle within the temporal interval [tv1− Rs/c, tv2+ Rs/c], because
ρs1≤ Rs (Fig. 5a). It can be seen from Eq. (29) thatTn(r12, t) spans the temporal interval
[−Rc/c, Rc/c]. Therefore, upon convolvingTn(r12, t)with the outgoing rays, the temporal
interval during which incoming rays pass through the center of the observation circle is
[tv1− (Rs+ Rc)/c, tv2+ (Rs+ Rc)/c] (Fig. 5b). Although these incoming rays are time-
limited, their Hilbert transform in general has an infinitely long temporal tail. The signal
that results from Hilbert transforming the incoming ray, which consists of the actual field
and the ghost signal, is also illustrated in Fig. 5b. The FFT cannot be directly invoked to
compute the Hilbert transform because the spectral sampling rate has to be extremely high to
produce accurate temporal waveforms. To overcome this difficulty, it is noted that the infinite
temporal tail of the Hilbert transforms of the incoming rays is caused by the rapid variation
of their spectral content around DC. Hence, a multi-resolution spectral representation of
the incoming rays is considered.

Next, specific steps are described for efficiently evaluating the Hilbert transform within
the context of the PWTD algorithm. To facilitate the description, the temporal origin is
shifted to the center of the incoming rays. Then, the signal to be Hilbert transformed is
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FIG. 5. Time sequence of plane wave expansion and Hilbert transform. (a) The relationship between subsignal
and its outgoing rays; (b) The relationship of incoming rays and the results after Hilbert transform.

virtually time-limited within [−t f , t f ], and frequency-limited within [−ω f , ω f ], where
t f = Ts/2+ (Rs+ Rc)/c.

First, the spectrum of the outgoing rays, sampled at a rate of1ω=π/(χ3t f ), is obtained
using an FFT. This spectrum is then multiplied with that of the pertinent translation function
given by Eq. (30). Here,χ3> 1 is thespectal oversampling rate.The continuous spectrum
can be recovered by convolving the sampled representation with the local spectral inter-
polantP(ω, t f , χ3, ps) (Appendix). This interpolant becomes vanishingly small and can be
truncated when|ω| ≥ ps1ω. The interpolation error can be controlled and made arbitrarily
small by increasingps or χ3. In what follows, however, it is assumed thatχ3≤ 2; hence,
accuracy is attained by increasingps.

Second, the spectral samples are split into two sets. The first set consists of all samples
with frequencies satisfying|ω|> ps1ω and is termed thehigh frequency set. The second
set consists of 2ps+ 1 samples that reside in the frequency interval [−ps1ω, ps1ω] and
is termed thelow frequency set. Similarly, the original spectrum is split into two spectra.
The first spectrum results from convolving the high frequency set withP(ω, t f , χ3, ps) and
is denoted HF(1). The second spectrum results from convolving the low frequency set with
P(ω, t f , χ3, ps) and is denoted LF(1).

Third, the LF(1) spectrum is sampled at a rate1ω/2. This operation results in 8ps+ 1
samples. These samples are again split into high and low frequency sets. The former consists
of the samples whose frequency satisfies|ω|> ps1ω/2, and the latter consists of 2ps+ 1
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samples that reside within the interval [−ps1ω/2, ps1ω/2]. The LF(1) spectrum is then
split into two spectra, HF(2) and LF(2), which result from convolvingP(ω, 2t f , χ3, ps)

with the above described sets of high and low frequency samples, respectively. This step
is carried out recursively, a total ofNrec times. During thei th recursion,i = 2, 3, . . . , Nrec,
spectrum LF(i ) is sampled at a rate1ω/2i , interpolated usingP(ω, 2i t f , χ3, ps), and split
into high frequency spectrum HF(i+1) and low frequency spectrum LF(i+1). This recursive
process above is illustrated in Fig. 6. The original spectrum is approximated byNrec+ 1
spectra HF(1), HF(2), . . . , HF(Nrec) and LF(Nrec).

FIG. 6. Illustration of numerical evaluation of the Hilbert transform.
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Finally, the Hilbert transform of the incoming rays can be approximated by Hilbert
transforming the signals described by HF(i ), i = 1, 2, . . . , Nrec. The temporal duration of
the signal described by the spectrum HF(i ) is [−2i−1χ3t f , 2i−1χ3t f ]. It is easily verified that
the temporal duration of sgn(ω)HF(i ) is the same as that of HF(i ). Therefore, a conventional
FFT scheme can be used to obtain the temporal signals corresponding to sgn(ω)HF(i ),
i = 1, 2, . . . , Nrec (in practice, the use of the FFT is only required for HF(1); the spectra
HF(i ), i = 2, 3 . . . , Nrec are fully described by 8ps+ 1 samples and their transform can be
evaluated using a discrete Fourier transform). The sum of all these signals will approach the
Hilbert transform of the outgoing rays with increasingNrec. The energy of the error, which
in essence is the energy of LF(Nrec), decreases exponentially fast with increasingNrec.

2.3.4. Computational complexity.The computational cost associated with the evalu-
ation of the observer field has four components, resulting from the four stage scheme
described in Subsection 2.2.

(i) Construction of outgoing rays.At each temporal sampling point, the source is
projected ontoO(Nφ) outgoing rays. Each subsignal consists ofO(Mt ) samples, and there
areNt/Mt subsignals. Therefore, the computational cost associated with the construction
of the outgoing rays is

C1
ff ∝ (# of rays)× (# of subsignals)× (cost of projecting a subsignal)

∝ Nφ
Nt

Mt
Mt

∝ NφNt . (32)

(ii) Construction of incoming rays.Translation occurs everyMt time steps. During
translation,O(Nφ) outgoing rays are translated andO(Nφ) incoming rays constructed. The
cost of one translation isO(Mt log Mt ) provided that the convolution is effected using an
FFT and thatTs∝ Rc/c. The latter assumption guarantees that the duration of the incoming
rays is commensurate with that of the translation functions for the FFT to be an efficient
means for carrying out the convolution. Therefore, the computational cost associated with
the construction of the incoming rays is

C2
ff ∝ (# of directions)× (# of traslations per direction)× (cost per translation)

∝ Nφ
Nt

Mt
Mt log Mt

≤ NφNt log Nt . (33)

(iii) Construction of the Hilbert transforms of the incoming rays.Each incoming ray
is Hilbert transformed immediately following translation. The evaluation of the Hilbert
transform requires an FFT to calculate the spectrum of the incoming ray, and additional
filtering operations to decompose the spectrum of the incoming rays into a multiresolu-
tion basis. The cost of the FFT isO(Mt log Mt ), because the lengths of incoming rays
are proportional toMt . The cost of decomposing the spectrum of the incoming rays into a
multiresolution basis is ofO((Nrec+ 1)(8ps+ 1)) and is fixed. The inverse Fourier trans-
form of the high frequency spectrum HF(1) is carried out using an FFT, resulting in a cost
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O(Mt log Mt ). All the other high frequency spectra are stored, and their contribution to the
Hilbert transformed incoming rays is computed using a discrete Fourier transform, result-
ing in a cost that is ofO((Nrec+ 1)(8ps+ 1)) per time step. In practice, their contributions
are computed immediately upon translation for “all ray samples that reside over the ob-
server circle,” and new samples are added one by one, as the ray propagates through the
observer sphere. The dominant cost in this sequence of operations is ofO(Mt log Mt ). In
conclusion, the cost associated with the construction of the Hilbert transformed incoming
rays is

C3
ff ∝ (# of directions)× (# of traslations per direction)× (cost per Hilbert transform)

∝ Nφ
Nt

Mt
Mt log Mt

≤ NφNt log Nt . (34)

(iv) Construction of the observer field.Finally, the superposition of all Hilbert trans-
formed incoming rays that impinge on a group are projected onto the individual observers
and summed up. This operation is the counterpart of that described under (i); hence its cost
scales as

C4
ff ∝ NφNt . (35)

The above cost estimates will be revisited in Section 3, where the computational complexity
of PWTD augmented MOT solvers is studied.

2.4. Numerical Validation and Discussion

In this section, results from several numerical experiments are presented that validate the
proposed algorithm. A single source and a single observation point are selected within the
source and observation circles shown in Fig. 3, whereφ12= 90◦, Rc= 10 m, andRs= 0.5 m.
The time signature of the source is Gaussian withf (t)1 = e−(t−t0)2/2σ 2

, wheret0= 10−8,
σ = 10−9, and we safely chooseωmax= 7× 109 rad/s. The following parameters determine
the accuracy of the scheme:χ1, χ2, χ3, pt , ps, andNrec. In what follows, we fixχ3= 2, and
study the behavior of the error with respect to changes in the other parameters.

The field at the observation point computed by direct convolution (Eq. (2)),AD(t), is
compared to that computed using the PWTD algorithm,APWTD(t). The L2 error of the
PWTD field is defined as

L2 error=
∫ +∞
−∞ [ AD(t)− APWTD(t)]2 dt∫ +∞

−∞ A2
D(t) dt

. (36)

In the first example, we pickχ1= 3.45 andpt = 15, which ensures that temporal sampling
errors are negligible (errors of this type were studied withn the context of the 3D PWTD
scheme, presented in [7]). The L2 error for different values ofNrec andps is shown in Fig. 7,
where we assumeχ2= 1 andNφ = 24. As expected, for a fixedNrec, the error reaches a
lower limit as ps is increased, and vice versa. Optimal combinations forNrec and ps can
be determined from this figure.

Figure 8 shows the behavior of the instantaneous field error,|AD(t)− APWTD(t)| for
Nrec= 5, 6, and 7, assuming thatps= 15 and that all other parameters remain fixed at their
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FIG. 7. The L2 error for differentps andNrec, whenχ1= 3.45, pt = 15, andχ2= 1.

FIG. 8. Instantaneous error forNrec= 5, 6, and 7, whenps= 15, χ1= 3.45, pt = 15, andχ2= 1.
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FIG. 9. L2 error for differentχ2, whenNrec= 6, ps= 7, χ1= 3.45, pt = 15.

above values. For these parameter choices, the error is mainly due to the choice ofNrec, and
Fig. 8 shows that the instantaneous error decreases whenNrec increases. The PWTD field
vanishes afterTt (Nrec), and whent > Tt (Nrec), the error shown is nothing but the tail of the
actual field. The instantaneous error reaches its maximum atTt (Nrec). It can also be shown
that whenNrec increases by one,Tt (Nrec) increases by about a factor of two, and the energy
in the error field drops by a factor of two.

Next, the effect of the choice ofχ2 is studied.The time signature of the source is a mod-
ulated Gaussian pulse,f2(t)= cos(ω0t)e−(t−t0)2/2σ 2

, whereω0= 109 rad/s. The maximum
frequencyωmax is chosen to be 1.25× 109 rad/s. WhenNrec= 6, ps= 7, and all the other
parameters remain the same as before, the L2 error for differentχ2 is plotted in Fig. 9.
It is observed that the error decreases rapidly with increasingχ2, until the error becomes
dictated by the other parameters.

Finally, we study the behavior of the error field throughout the observer circle. In this
experiment, six sources with identical temporal signaturesf (t)1 are distributed evenly over
the perimeter of the source circle. In Fig. 10, the L2 error distribution is plotted throughout
a 3 m by 3 mbox, whose center coincides with that of the observation circle. The general
logarithm of the L2 error is shown in different colors. Four different groups of parameters
are chosen as in Table I. The minimum L2 errors in the observation box are also shown in
the table. This experiment demonstrates that through the proper choice of parameters, the
error introduced by the PWTD scheme can be made arbitrarily small.

3. COMPUTATIONAL COMPLEXITY OF PWTD ENHANCED MOT SCHEMES

This section describes two-level and multilevel PWTD enhanced MOT solvers. To this
end, consider the 2D scatterer shown in Fig. 1. As discussed above, assuming that the
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FIG. 10. The L2 error distribution within an observation box. The parameters are chosen as in Table I.

current on the scatterer is described in terms ofNs spatial unknowns for a total ofNt

time steps, the computational cost associated with the analysis of this scattering problem
using classical MOT schemes scales asO(N2

t N2
s ). In the two-level PWTD enhanced MOT

scheme, the scatterer is divided into a large number of small subscatterers and the PWTD
scheme is invoked to evaluate interactions between the vast majority of subscatterer pairs.
To arrive at a multilevel PWTD enhanced MOT scheme, this algorithm is cast in a divide
and conquer framework. The proposed schemes are quite similar to frequency domain fast
multipole algorithms [9, 10]. Subsections 4.1 and 4.2 describe two-level and multilevel
PWTD enhanced MOT schemes, with computational complexities ofO(N1.5

s Nt log Nt )

andO(NsNt log Ns log Nt ), respectively.

TABLE I

The Parameters and Minimum L2 Error in Fig. 10

χ1 χ2 pt ps Nrec Minimum L2 error

(a) 2.0 0.4 8 5 6 0.0017
(b) 3.0 0.6 12 6 7 6.07× 10−4

(c) 3.45 0.8 15 7 10 9.92× 10−5

(d) 3.45 1.0 15 8 12 2.51× 10−5
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3.1. Two-Level PWTD Enhanced MOT Scheme

To efficiently evaluate the field due to transient sources that reside on a 2D object using
the two-level PWTD algorithm, the object is enclosed into a fictitious square box, which
is further subdivided into a large number of equally sized square boxes of circumscribing
radius Rs. The set of sources that reside within a nonempty box is termed a group. If
Ng denotes the total number of nonempty boxes, then the average number of sources per
group isMs= Ns/Ng. In addition, if the scatterer is discretized using a fixed number of
basis functions per shortest wavelength in the incident pulse, then it can be shown that
Ms∝ Rsωmax/c and Nφ ∝Ms (see Eq. (27)). LetRc,αα′ denote the distance between the
centers of the boxes associated with groupsα andα′, α, α′ = 1, 2, . . . , Ng. A pair of groups
(α, α′) is termed a far-field pair ifRc,αα′ >βRs and a near-field pair ifRc,αα′ ≤βRs where
β is a constant that is typically chosen in the range 3≤β ≤ 6. LetFF andNF denote the sets
of all far- and near-field pairs, respectively. The numbers of far-field pairs scale asO(N2

g),
and the number of near-field pairs asO(Ng).

If two groups constitute a far-field pair, the 2D PWTD scheme is invoked to evaluate
the field due to sources associated with one group at observers in the other group, and vice
versa. LetMt,min denote the number of samples that describe the longest possible subsignal
that can be used within the PWTD scheme when considering the far-field pair with the
smallestRc,αα′ . It follows from Eqs. (19) and (23) thatMt,min is given by

Mt,min = min
(α,α′)∈FF

{b(Rc,αα′ − 2Rs)/(c1t)− 2pt + 1c}. (37)

If, for a given choice ofpt , Eq. (37) yields a negativeMt,min, thenβ needs to be increased to
enlarge the near-field region. If Eq. (37) yields a positiveMt,min, then, at lest for a sufficiently
largeβ,Mt,min will be of O(Rs1t/c). The number of samples that feature in the PWTD
based evaluation of fields exchanged between other far-field pairs is computed as

Mt,αα′ = nαα′Mt,min, (38)

where the integernαα′ is given by

nαα′ =
⌊
(Rc,αα′ − 2Rs)/(c1t)− 2pt + 1

Mt,min

⌋
. (39)

Equation (38) guarantees that outgoing rays that are comprised ofO(Mt,αα′) samples fea-
turing in the PWTD based computation of fields exchanged between groupsα andα′ can
be constructed by splicingnαα′ shorter rays, each described byO(Mt,min) samples. This
construction results in considerable computational savings because outgoing rays need not
be constructed from scratch when considering different far-field pairs. With this proviso
in mind, Eq. (38) also maximizes the length of the outgoing rays for each far-field pair.
This implies that the convolution of the outgoing rays and translation functions can be
effected using an FFT inO(Mt,αα′ log Mt,αα′) operations. Indeed, the translation functions
span the temporal interval [−Rc,αα′/c, Rc,αα′/c] (see Eq. (29)), which, in view of the above
construction, can be shown to be proportional toMt,αα′1t . Therefore, both the outgoing
rays and the translation fuctions are described byO(Mt,αα′) samples, and hence they can
be convolved efficiently using an FFT.
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The computational cost associated with the evaluation of all far-field interactions has four
components, resulting from the four-stage scheme described above.

(i) Construction of outgoing rays.At each temporal sampling point, each and every
source in every group is projected onto outgoing rays. Therefore, the computational cost
associated with the construction of the outgoing rays is

CTL,1
ff ∝ (# of far-field groups)× (# of source points per group)×C1

ff

∝ NgMsNφNt

∝ N2
s

Ng
Nt . (40)

(ii) Construction of incoming rays.Incoming rays are constructed for all far-field
pairs. Therefore, the computational cost associated with the construction of the incoming
rays is

CTL,2
ff ∝

∑
α,α′

C2
ff

≤ N2
g NφNt log Nt

∝ NgNsNt log Nt . (41)

(iii) Construction of the Hilbert transforms of the incoming rays.Hilbert transformed
incoming rays are constructed immediately following a translation, i.e., following the con-
struction of the incoming rays. Therefore, the cost associated with the construction of the
Hilbert transformed incoming rays is

CTL,3
ff ∝

∑
α,α′

C3
ff

≤ N2
g NφNt log Nt

∝ NgNsNt log Nt . (42)

(iv) Construction of the observer field.Finally, the superposition of all Hilbert trans-
formed incoming rays that impinge on a group are projected onto the individual observers
and summed up. This operation is the counterpart of that described under (i); hence its cost
scales as

CTL,4
ff ∝ N2

s

Ng
Nt . (43)

If two groups constitute a near-field pair, the PWTD scheme cannot be invoked directly.
There reside approximatelyMs sources in each group, and theM2

s interactions between
sources and observers residing in these two groups need to be evaluated one by one. Although
the computational cost for classically evaluating one such interaction scales asO(N2

t ) (see
Subsection 2.1), this cost can be reduced toO(Nt log Nt ). This cost reduction is achieved
by invoking the PWTD scheme for each near-field source-observer pair, in the limitRs→ 0.
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It follows that the computational cost for evaluating the near-field scales as

CTL
nf ∝

∑
(α,α′)∈NF

(# of interactions for one near field pair)×Cnf

∝ NgM2
s Nt log Nt

∝ N2
s

Ng
Nt log Nt . (44)

In conclusion, the total computational costCTL for a two-level scheme is

CTL = CTL,1
ff + CTL,2

ff + CTL,3
ff + CTL,4

ff + CTL
nf . (45)

It can be verified that the choiceNg∝
√

Ns minimizesCTL, and that with this choice of
group sizeCTL is of O(N1.5

s Nt log Nt ).

3.2. Multilevel PWTD Enhanced MOT Scheme

Cost savings beyond those achieved by the two-level PWTD enhanced MOT scheme
result from casting the PWTD scheme into a divide and conquer framework, whereby
groups are aggregated into larger entitites before translation.

As in the two-level scheme, the scatterer is enclosed in a square box. This box is recur-
sively subdivided into four equally sized square boxes, a total ofNl times. A box that is subdi-
vided into smaller boxes is termed theparentof thechildboxes that result from the operation.
The smallest box is termed alevel onebox, and the sources residing within a level one box
are termed alevel one group; higher level boxes and groups are defined similarly. For levels
l = 1, . . . , Nl , let Ng(l ) denote the number of groups (nonempty boxes),Ms(l ) the average
number of sources in each group,Rs(l ) the circumscribing radius of a levell box, andNφ(l )
the number of directions required in the construction of the translation functions. It follows
from the discussion of the two-level scheme thatNφ(l )∝ Rs(l )ωmax/c∝Ms(l ). It is obvious
thatRs(l + 1)= 2Rs(l ), thatMs(l + 1)= 2Ms(l ), and thatNg(l + 1)= Ng(l )/2. In addition,
Nl is always chosen such that a level one group containsO(1) sources, which implies that
Nl ≈ log Ns, that Ng(1)∝ Ns, that Ms(1)∝ 1, that Ng(Nl )∝ 1, and thatMs(Nl )∝ Ns; it
then also follows thatNg(l )Ms(l )∝ Ns.

Next, consider all group pairs (α, α′), where bothα andα′ reside at the same level. A
pair (α, α′) is termed alevel l far-field pairprovided thatRc,αα′ >βRs(l ) and that their
respective parent groups do not from a levell + 1 far-field pair. A pair of groups that resides
at level one and whose respective parent groups do not form a level two far-field pair is
termed anear-field pair. The number of far-field pairs at levell is proportional toNg(l ),
and the number of near-field pairs is proportional toNg(1)∝ Ns. In what follows, letFF(l )
andNF denote the sets of all levell far- and near-field pairs, respectively. The multilevel
PWTD scheme will effect interactions between all far-field pairs.

As in the two-level algorithm, the PWTD scheme is invoked to evaluate all interactions
involving far-field pairs. In the multilevel scheme, the number of samples that describe the
longest possible subsignal that can be used within the PWTD scheme when considering
the nearest by level one far-field pairs,Mt,min(1), follows from Eq. (37) withFF replaced
by FF(1). Defining Mt,min(l + 1)= 2Mt, min(l ), the number of samples that feature in the
PWTD based evaluation of fields exchanged between levell far-field pair (α, α′), Mt,αα′ is
computed using Eqs. (38) and (39) withMt,min replaced byMt,min(l ). Like in the two-level
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algorithm, this construction again guarantees that outgoing rays at levell can be constructed
effectively by splicing fundamental rays described byO(Mt,min(l )) samples. In addition,
fundamental rays at levell + 1 can be obtained by splicing two fundamental outgoing rays
at levell .

Fundamental outgoing rays are constructed as follows. At level 1, the outgoing rays
are constructed by directly projecting sources onto a set of directions, as in the two-level
algorithm. At higher levels, outgoing rays are constructed by (i) splicing two consecutive
outgoing rays, (ii) interpolating these rays to a set of directions that is roughly twice as
dense(Nφ(l + 1)= 2Nφ(l )), and (iii) translating these rays from the box center to that of
its parent box (this means that every ray is time delayed or advanced based on its direction
w.r.t. the vector connecting the box centers involved). A similar process, but in reverse
order, is carried out when going down the multilevel tree: incoming rays at lower levels are
constructed from those at higher levels via ray resection (the opposite of ray splicing) and
anterpolation (or filtering) to reduce the number of angular components.

As always, the cost for computing all interactions between far-field elements comprises
four components:

(i) Construction of outgoing rays.At level 1, outgoing rays are constructed as in the
two-level scheme. At levell > 2, the outgoing rays are constructed as described above. The
cost of splicing, interpolating, and projecting at all levels is

CML,1
ff ∝

∑
(α,α′)∈FF(1)

C1
ff +

Nl∑
l=2

∑
(α,α′)∈FF(l )

{(# of directions at levell )

× (# of projections at levell )× (length of each projection at levell )}

∝ Ng(1)Nφ(1)Mt,min(1)+
Nl∑

l=2

{
Ng(l )Nφ(l )

Nt

Mt,min(l )
Mt,min(l )

}

∝
Nl∑

l=1

{Ng(l )Ms(l )Nt }

∝ NsNt log Ns. (46)

(ii) Construction of incoming rays.At level l , translations for a far-field group pair
(α, α′) occur everyMt,α,α′(l ) time steps with a complexity ofO(Nφ(l )Nt log Nt ), as dis-
cussed in the two-level case, hence

CML,2
ff ∝

Nl∑
l=1

{ ∑
(α,α′)∈FF(l )

C2
ff

}

≤
Nl∑

l=1

{ ∑
(α,α′)∈FF(l )

Nφ(l )Nt log Nt

}

∝
Nl∑

l=1

{Ng(l )Ms(l )Nt log Nt }

∝
Nl∑

l=1

{NsNt log Nt }

∝ NsNt log Ns log Nt . (47)
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(iii) Construction of Hilbert transformed incoming rays.As in the two-level algorithm,
a Hilbert transform is carried out after each translation. The computational cost of this
operation scales as

CML,3
ff ∝

Nl∑
l=1

{ ∑
(α,α′)∈FF(l )

C3
ff

}

≤
Nl∑

l=1

{ ∑
(α,α′)∈FF(l )

Nφ(l )Nt log Nt

}

∝
Nl∑

l=1

{Ng(l )Ms(l )Nt log Nt }

∝
Nl∑

l=1

{NsNt log Nt }

∝ NsNt log Ns log Nt . (48)

(iv) Construction of observer field.The cost of this operation scales as that ofCML,1
ff :

CML,4
ff ∝ NsNt log Ns. (49)

For a near-field pair (α, α′), the interactions between the spatial unknowns within them
should be evaluated in a point to point manner. Similar to the near-field part in Subsection 4.1,
the cost for computing one near-field interaction can be reduced toO(Nt ) by using a
Hilbert transformed plane wave expansion. The computational cost for near-field evaluations
therefore scales as

CML
nf ∝

∑
(α,α′)∈NF

(# of interactions)× (cost of computing one interaction)

∝ Ng(1)M
2
s (1)Nt

∝ NsNt . (50)

It is seen thatCML,2
ff andCML,3

ff scale worse than all other costs involved in the multilevel
PWTD. It is concluded that the total cost associated with a multilevel PWTD enhanced
MOT solver, viz.

CML = CML,1
ff + CML,2

ff + CML,3
ff + CML,4

ff + CML
nf , (51)

scales asO(NsNt log Ns log Nt ).

4. CONCLUSIONS

This paper outlined the 2D PWTD algorithm which permits the rapid evaluation of
linear transient wave fields generated by 2D source configuration. A four-stage aggregation-
translation-disaggration scheme was developed that relies on an expansion of the wave field
in terms of a Hilbert transformed plane wave spectrum. Numerical experiments show that
the error of this algorithm can be controlled and be made arbitrarily small by the proper
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choice of parameters. The proposed PWTD scheme can be coupled to classical time domain
integral equation based solvers. For a two-dimensional surface scattering problem modeled
in terms of Ns spatial unknowns for a total ofNt time steps, two-level and multilevel
integral equation based solvers, developed on the basis of the method proposed in this paper,
exhibit the computational complexities ofO(N1.5

s Nt log Nt ) and O(NsNt log Ns log Nt ),
respectively. Therefore, these PWTD schemes make feasible the rapid integral equation
based analysis of scattering from large surfaces. These schemes can also be used in the
construction of fast global absorbing boundary condition for truncating grids used in the
finite difference modeling of wave phenomena. We are currently studying these and various
other applications of these schemes.

APPENDIX: VARIOUS DEFINITIONS

In this paper,u(x) andP(x, y) denote Heaviside step and pulse functions defined as

u(x) =
{

0, x < 0
1, x > 0,

(A.1)

P(x, y) = u(x + y)− u(x − y). (A.2)

In addition,F(·) andF−1(·) define the Fourier transform and its inverse, respectively,

{
f̃ (ω) = F{ f (t)} = ∫ +∞−∞ f (t)e− jωt dt

f (t) = F−1{ f̃ (ω)} = 1
2π

∫ +∞
−∞ f̃ (ω)ejωt dω.

(A.3)

The Hilbert transform is denoted byH(·),

H{ f (t)} = 1

π
−
∫ +∞
−∞

f (α)

t − α dα, (A.4)

where the symbol−∫ stands for principle value integral. The Hilbert transform can be also
be expressed as

H{ f (t)} = F−1{− j sgn(ω)F [ f (t)]}, (A.5)

where Im(·) denotes the “imaginary part of,” and sgn(x) is the sign function

sgn(x) =
{

1, x > 0
−1, x < 0.

(A.6)

Finally, the following interpolation function is a variant of the one originally proposed by
Knab [15],

P(t, ωmax, χ, p) = ω0

ω f
sinc(ω0t)

sin
{
Äp1t

√
(t/p1t)2− 1

}
sinh(Äp1t)

√
(t/p1t)2− 1

, (A.7)
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where

ω f = χωmax

1t = π

ω f
(A.8)

ω0 = ωmax
(χ + 1)

2

Ä = ωmax
(χ − 1)

2
.

The functionP(t, ωmax, χ, p) can be used to locally interpolate functions of bandwidth
ωmax in terms of 2p+ 1 samples.P(t, ωmax, χ, p) is virtually time-limited and vanishes
for |t |> p1t . P(t, ωmax, χ, p) is also band-limited toω f . The truncation error due to local
interpolation decreases exponentially fast with increasingp.
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